The state of NLP in 2019.
— Eric Wallace (@Eric_Wallace_) December 19, 2019
I’m talking with an amazing undergrad who has already published multiple papers on BERT-type things.
We are discussing deep into a new idea on pretraining.
Me: What would TFIDF do here, as a simple place to start?
Him: ....
Me: ....
Him: What’s TFIDF?
Ми з Мар'яною Романишин розпочали третій набір курсу з обробки людської письмової мови (чи як краще перекласти NLP :-p) в Проджекторі. Хотів написати трохи деталей про нього, бо курс нам дуже подобається і, звісно, кожного року хочеться, щоб його рівень продовжував зростати. А для цього треба, щоб потенційні студенти про нього знали і розуміли, як він влаштований.
Курс є трьохмісячним інтенсивом, який ставить на меті підготувати спеціаліста, здатного самостійно і якісно вирішувати NLP-задачі будь-якої складності. Як наодинці, так і в команді. Для того, щоб бути максимально успішним в ньому, треба мати певну базу. Як правило, найкраще себе показують, звісно, програмісти. Але є й винятки: ми залюбки беремо лінгвістів, журналістів, та й, загалом, спеціалістів з інших галузей за умови, що вони володють достатніми навиками програмування, щоб самостійно писати програми, налаштовувати зручне для себе середовище розробки і розуміти базові алгоритмічні концепції. Для курсу не треба знати ML, хоча якесь уявлення про нього бажано мати. Але курс побудований так, що ми почергово розбираємо NLP-теми і пов'язані з ними розділи ML. Звісно, це не значить, що в результаті людина буде гарно розбиратись у машинному навчанні, але необхідну базу для продовження поглиблення у цій сфері отримає.
Другою передумовою успіху на курсі є наявність достатнього часу. Ми кажемо, що необхідний мінімум — це 10 годин самостійної роботи на тиждень, плюс 5 годин на заняттях. Іншими словами, враховуючи час на дорогу, це вже пів робочих ставки. Але, звісно, комусь може знадобитись і більше самостійного часу. Крім того мозок буде досить сильно завантажений новими темами, тому на час занять доведеться відмовитись від інших додаткових проєктів, хоббі і т.п. Також не дуже добре виходить, якщо більше тижня підряд випадає з якоїсь зовнішньої причини: хвороби, відрядження, шлюбу, народження дітей... :)
Як побудований цей курс? Ми збираємо групу з 15 студентів і зустрічаємось два рази на тиждень: одне заняття — теоретичне у четвер увечері, присвячене розбору певної теми, друге — практичне у суботу, на якому ми показуємо приклад вирішення задачі по цій теми і разом програмуємо його. У більшості випадків, ця програма буде основою для розв'язку більш просунутої, але подібної задачі, яка дається на домашню роботу. Відповідно, у нас є 12 тижнів основної роботи, тобто 12 тем і близько 10 повноцінних домашніх проєктів рівня побудувати систему аналізу тональності, перевірки фактів чи синтаксичного розбору. Звісно, в умовах обмеженого часу, кожний з проєктів робиться в рамках певного обмеженого домену.
Курс розбитий на 3 частини:
- перший місяць — це дуже ґрунтовна підготовча робота: основи структурної лінгвістики, робота з даними, метрики, правильні експерименти, підхід на правилах. В кінці місяця в голові у студента має сформуватись цілком структуроване уявлення про те, як правильно підходити до вирішення NLP-задач. Інший результат цієї частини — сформульоване завдання для курсового і початок роботи над ним: зібрані перші дані, визначена метрика, пророблений план експериментів
- другий місяць — це занурення в класичне NLP з паралельною проробкою наійбільш розповсюджених ML-технік, які в ньому використовуються. В кінці місяця, після вирішення на лекціях, практичних і вдома майже десятка NLP-задач у студентів вже мають сформуватись навички для самостійного застосування цих технік у реальних проєктах. Ну і зроблена основна частина курсової роботи
- останній місяць — це deep learning в NLP. Ми одразу попереджаємо, що цей курс не ставить на меті розказати побільше найгарячішого і проривного: для цього є достатньо інших майданчиків. Ми хочемо сформувати систематичне розуміння NLP, з всією його 70-річною історією. Бо в цій історії є дуже багато корисних і, можливо, timeless речей. Тож до state-of-the-art ми підходимо тільки під кінець (і на останньому занятті у нас виступає запрошений лектор, який розказує щось про bleeding edge :) Але принципові речі, пов'язані з DL, ми також пророблюємо як на заняттях, так і в рамках курсового. Ті зі студентів, кого цікавить саме ця сфера, під кінець курсу ганяють навчання десяток нейронок в своїх пісочницях, а також випробовують можливості глибинного навчання у своєму курсовому проєкті.. Втім, тут ми не можемо похвалитись приголомшливими результатами по якості, адже для їх досягнення замало пари тижнів, які по-максимуму є на ту чи іншу задачу: навчання глибинних моделей потребує багато як обчислювальних ресурсів, так і часових. Але тому, як до цього підходити, ми навчаємося
Як можна побачити з цього опису, дуже велику увагу ми приділяємо курсовому проєкту, роботу над яким стимулюємо кожного тижня. В результаті, у більшості виходять досить непогані і цікаві штуки, понад 70% студентів доходять до фінішу з якісною завершеною роботою (нечувана кількість для інших курсів, в яких мені доводилось брати участь). Деякі з проєктів навіть виходять у великий світ: хтось робить речі, пов'язані з роботою, хтось — з хоббі. За 2 роки у нас було 2 дослідження для журналістики даних, проєкт з аналізу конфліктів ліків між собою та з хронічними хворобами людини (на основі обробки інструкцій), система пошуку у соціальному застосунку для конференцій з запитами природньою мовою. Був і ряд цікавих проєктів для себе, які досягли класних результатів по якості та були зроблені з душею. Все це студенти презентують після закінчення на великій фінальній вечірці в офісі Grammarly.
Одна з основних цілей цього курсу для нас полягає в тому, щоб вирощувати українську NLP-спільноту. Адже школи комп'ютерної лінгвістики у нас, по суті, ніколи не було. І ми сподіваємось, що нам вдастся долучитись до її формування разом з іншими прогресивними проєктами навчання в цій сфері, зокрема магістерською програмою по Data Science в УКУ. У курсу вже більше 30 випускників, які увійшли до закритого клубу prj-nlp-alumni де ми ділимось цікавими речами та можливостями, а також плануємо періодично зустрічатись у неформальній атмосфері, а не тільки на івентах. Тож сподіваємось на розширення цього клубу ще на половину у червні цього року :)
P.S. До речі, про УКУ. Я також беру участь як викладач і ментор дипломних робіт у курсі NLP в їх програмі. Це трохи інший досвід, ніж цей курс. Звісно, УКУ пропонує більш академічну програму, яка триває довший час. Студенти отримують там гарну і, що важливо, систематичну підготовку з ML та DL. Тому цьому зовсім не треба приділяти увагу на курсі по NLP. З іншого боку, курс більш короткий і читається декількома викладачами, тому в його рамках важче сформувати цілісну картинку, нема можливості організувати такий же рівень занурення і концентрації, як на курсі в Проджекторі. Зате на магістерську роботу у них більше часу, ніж на весь наш курс. Але, найголовніше, що і тут, і там підбираються гарно підготовлені і мотивовані студенти, тож результати в УКУ також виходять гарної якості з великою кількістю цікавих робіт. Деякі з яких мають рівень статей на топові наукові конференції у цій галузі. Хоча мені особисто все-таки більше подобається формат Проджектора, адже він дає можливість відчути дух інтенсивної командної роботи протягом трьох місяців, зітхнувши з полегшенням в кінці у передчутті дев'ятимісячного перепочинку і нової ітерації...
Your Affiliate Profit Machine is waiting -
ReplyDeletePlus, making profit with it is as simple as 1--2--3!
Here are the steps to make it work...
STEP 1. Tell the system which affiliate products you want to push
STEP 2. Add some push button traffic (this LITERALLY takes 2 minutes)
STEP 3. See how the affiliate products system grow your list and sell your affiliate products on it's own!
Do you want to start making profits?
Click here to start running the system